Info Articles > Categories > History > History of Astronomy > Sir Isaac Newton and the Law of Universal Gravitation
## Sir Isaac Newton and the Law of Universal GravitationIsaac Newton was born in 1642. Pemberton states that Newton, having quitted Cambridge to avoid the plague, was residing at Wolsthorpe, in Lincolnshire, where he had been born; that he was sitting one day in the garden, reflecting upon the force which prevents a planet from flying off at a tangent and which draws it to the sun, and upon the force which draws the moon to the earth; and that he saw in the case of the planets that the sun’s force must clearly be unequal at different distances, for the pull out of the tangential line in a minute is less for Jupiter than for Mars. He then saw that the pull of the earth on the moon would be less than for a nearer object. It is said that while thus meditating he saw an apple fall from a tree to the ground, and that this fact suggested the questions: Is the force that pulled that apple from the tree the same as the force which draws the moon to the earth? Does the attraction for both of them follow the same law as to distance as is given by the planetary motions round the sun? It has been stated that in this way the first conception of universal gravitation arose. Quite the most important event in the whole history of physical astronomy was the publication, in 1687, of Newton’s Principia (Philosophiae Naturalis Principia Mathematica). In this great work Newton started from the beginning of things, the laws of motion, and carried his argument, step by step, into every branch of physical astronomy; giving the physical meaning of Kepler’s three laws, and explaining, or indicating the explanation of, all the known heavenly motions and their irregularities; showing that all of these were included in his simple statement about the law of universal gravitation; and proceeding to deduce from that law new irregularities in the motions of the moon which had never been noticed, and to discover the oblate figure of the earth and the cause of the tides. These investigations occupied the best part of his life; but he wrote the whole of his great book in fifteen months. Having developed and enunciated the true laws of motion, he was able to show that Kepler’s second law (that equal areas are described by the line from the planet to the sun in equal times) was only another way of saying that the centripetal force on a planet is always directed to the sun. Also that Kepler’s first law (elliptic orbits with the sun in one focus) was only another way of saying that the force urging a planet to the sun varies inversely as the square of the distance. Also (if these two be granted) it follows that Kepler’s third law is only another way of saying that the sun’s force on different planets (besides depending as above on distance) is proportional to their masses. Having further proved the, for that day, wonderful proposition that, with the law of inverse squares, the attraction by the separate particles of a sphere of uniform density (or one composed of concentric spherical shells, each of uniform density) acts as if the whole mass were collected at the centre, he was able to express the meaning of Kepler’s laws in propositions which have been summarised as follows: The law of universal gravitation. — Every particle of matter in the universe attracts every other particle with a force varying inversely as the square of the distance between them, and directly as the product of the masses of the two particles.But Newton did not commit himself to the law until he had answered that question about the apple; and the above proposition now enabled him to deal with the Moon and the apple. Gravity makes a stone fall 16.1 feet in a second. The moon is 60 times farther from the earth’s centre than the stone, so it ought to be drawn out of a straight course through 16.1 feet in a minute. Newton found the distance through which she is actually drawn as a fraction of the earth’s diameter. But when he first examined this matter he proceeded to use a wrong diameter for the earth, and he found a serious discrepancy. This, for a time, seemed to condemn his theory, and regretfully he laid that part of his work aside. Fortunately, before Newton wrote the Principia the French astronomer Picard made a new and correct measure of an arc of the meridian, from which he obtained an accurate value of the earth’s diameter. Newton applied this value, and found, to his great joy, that when the distance of the moon is sixty times the radius of the earth she is attracted out of the straight course 16.1 feet per minute, and that the force acting on a stone or an apple follows the same law as the force acting upon the heavenly bodies. The universality claimed for the law — if not by Newton, at least by his commentators — was bold, and warranted only by the large number of cases in which Newton had found it to apply. Its universality has been under test ever since, and so far it has stood the test. There has often been a suspicion of a doubt, when some inequality of motion in the heavenly bodies has, for a time, foiled the astronomers in their attempts to explain it. But improved mathematical methods have always succeeded in the end, and so the seeming doubt has been converted into a surer conviction of the universality of the law. Having once established the law, Newton proceeded to trace some of its consequences. He saw that the figure of the earth depends partly on the mutual gravitation of its parts, and partly on the centrifugal tendency due to the earth’s rotation, and that these should cause a flattening of the poles. He invented a mathematical method which he used for computing the ratio of the polar to the equatorial diameter. He then noticed that the consequent bulging of matter at the equator would be attracted by the moon unequally, the nearest parts being most attracted; and so the moon would tend to tilt the earth when in some parts of her orbit; and the sun would do this to a less extent, because of its great distance. Then he proved that the effect ought to be a rotation of the earth’s axis over a conical surface in space, exactly as the axis of a top describes a cone, if the top has a sharp point, and is set spinning and displaced from the vertical. He actually calculated the amount; and so he explained the cause of the precession of the equinoxes discovered by Hipparchus about 150 B.C. One of his grandest discoveries was a method of weighing the heavenly bodies by their action on each other. By means of this principle he was able to compare the mass of the sun with the masses of those planets that have moons, and also to compare the mass of our moon with the mass of the earth. Thus Newton, after having established his great principle, devoted his splendid intellect to the calculation of its consequences. He proved that if a body be projected with any velocity in free space, subject only to a central force, varying inversely as the square of the distance, the body must revolve in a curve which may be any one of the sections of a cone — a circle, ellipse, parabola, or hyperbola; and he found that those comets of which he had observations move in parabolae round the Sun, and are thus subject to the universal law. Newton realised that, while planets and satellites are chiefly controlled by the central body about which they revolve, the new law must involve irregularities, due to their mutual action—such, in fact, as Horrocks had indicated. He determined to put this to a test in the case of the moon, and to calculate the sun’s effect, from its mass compared with that of the earth, and from its distance. He proved that the average effect upon the plane of the orbit would be to cause the line in which it cuts the plane of the ecliptic (i.e., the line of nodes) to revolve in the ecliptic once in about nineteen years. This had been a known fact from the earliest ages. He also concluded that the line of apses would revolve in the plane of the lunar orbit also in about nineteen years; but the observed period is only ten years. For a long time this was the one weak point in the Newtonian theory. It was not till 1747 that Clairaut reconciled this with the theory, and showed why Newton’s calculation was not exact. Newton proceeded to explain the other inequalities recognised by Tycho Brahe and older observers, and to calculate their maximum amounts as indicated by his theory. He further discovered from his calculations two new inequalities, one of the apogee, the other of the nodes, and assigned the maximum value. Grant has shown the values of some of these as given by observation in the tables of Meyer and more modern tables, and has compared them with the values assigned by Newton from his theory; and the comparison is very remarkable. The only serious discrepancy is the first, which has been already mentioned. Considering that some of these perturbations had never been discovered, that the cause of none of them had ever been known, and that he exhibited his results, if he did not also make the discoveries, by the synthetic methods of geometry, it is simply marvellous that he reached to such a degree of accuracy. He invented the infinitesimal calculus which is more suited for such calculations, but had he expressed his results in that language he would have been unintelligible to many. Newton’s method of calculating the precession of the equinoxes, already referred to, is as beautiful as anything in the Principia. He had already proved the regression of the nodes of a satellite moving in an orbit inclined to the ecliptic. He now said that the nodes of a ring of satellites revolving round the earth’s equator would consequently all regress. And if joined into a solid ring its node would regress; and it would do so, only more slowly, if encumbered by the spherical part of the earth’s mass. Therefore the axis of the equatorial belt of the earth must revolve round the pole of the ecliptic. Then he set to work and found the amount due to the moon and that due to the sun, and so he solved the mystery of 2,000 years. When Newton applied his law of gravitation to an explanation of the tides he started a new field for the application of mathematics to physical problems; and there can be little doubt that, if he could have been furnished with complete tidal observations from different parts of the world, his extraordinary powers of analysis would have enabled him to reach a satisfactory theory. He certainly opened up many mines full of intellectual gems; and his successors have never ceased in their explorations. This has led to improved mathematical methods, which, combined with the greater accuracy of observation, have rendered physical astronomy of today the most exact of the sciences. Laplace only expressed the universal opinion of posterity when he said that to the Principia is assured “a pre-eminence above all the other productions of the human intellect.” The name of Flamsteed, First Astronomer Royal, must here be mentioned as having supplied Newton with the accurate data required for completing the theory. The name of Edmund Halley, Second Astronomer Royal, must ever be held in repute, not only for his own discoveries, but for the part he played in urging Newton to commit to writing, and present to the Royal Society, the results of his investigations. But for his friendly insistence it is possible that the Principia would never have been written; and but for his generosity in supplying the means the Royal Society could not have published the book. Sir Isaac Newton died in 1727, at the age of 85. His body lay in state in the Jerusalem Chamber, and was buried in Westminster Abbey. |
Info Articles Categories Animals and Pets Art and Culture Health and Fitness History Ancient Greek Art history European American history Facts about the sinking ship RMS Titanic Famous historical persons of the Middle Ages Foundation of the Order of Knights Templars A.D. 1118 From what is the word Parchment taken Historical occurence of Gems in the World History of ancient Rome History of Astronomy Astronomy from Ptolemy to Copernicus Chinese and Chaldaen Astronomy Galelei Galileo and the Telescope Sir Isaac Newton and the Law of Universal Gravitation History of Furniture History of the Rosetta Stone from Egypt History of the telephone History of the Telescope History of theories respecting the causes of subterranean ice Manor houses of the Middle Ages Netherlands history Peter Stuyvesant, the Last Dutch Governor of New Amsterdam (New York) The Dutch East and West India Companies War of American Independence and the Constitution of the United States What materials were used for writing, before the invention of Paper What was the origin of the city of Venice When and by whom were Watches and Clocks invented When did Hats come into general use When was Glass invented When was the manufacture of silk introduced into England When was the use of Money first introduced When were Spectacles invented, and who was their inventor Who invented the Steam Engine Who was Roger Bacon Who was Sir Walter Raleigh Who was the inventor of the telegraph Who was the original discoverer of Coffee Home and Garden Social Science Travel Nature & Science |

© 2004 - 2017 articles.net - Privacy Policy & Disclaimer |